Sequences and Limits

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Limits of permutation sequences

A permutation sequence (σn)n∈N is said to be convergent if, for every fixed permutation τ , the density of occurrences of τ in the elements of the sequence converges. We prove that such a convergent sequence has a natural limit object, namely a Lebesgue measurable function Z : [0, 1] → [0, 1] with the additional properties that, for every fixed x ∈ [0, 1], the restriction Z(x, ·) is a cumulativ...

متن کامل

Limits of dense graph sequences

We show that if a sequence of dense graphs Gn has the property that for every fixed graph F , the density of copies of F in Gn tends to a limit, then there is a natural “limit object”, namely a symmetric measurable function W : [0, 1] → [0, 1]. This limit object determines all the limits of subgraph densities. Conversely, every such function arises as a limit object. We also characterize graph ...

متن کامل

Sequences of Knots and Their Limits

Hyperfinite knots, or limits of equivalence classes of knots induced by a knot invariant taking values in a metric space, were introduced in a previous article by the author. In this article, we present new examples of hyperfinite knots stemming from sequences of torus knots.

متن کامل

Limits of randomly grown graph sequences

3 Convergent graph sequences and their limits 8 3.1 Growing uniform attachment graphs . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.2 Growing ranked attachment graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.3 Growing prefix attachment graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.4 Preferential attachment graph on n fixed nodes . . . . . . . . . . . . ....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Pure Mathematics

سال: 2015

ISSN: 2160-0368,2160-0384

DOI: 10.4236/apm.2015.52007